Prehistoric iron smelting in London: evidence from Shooters Hill

David Dungworth and Lorraine Mepham

ABSTRACT: An archaeological excavation at Shooters Hill in south-east London revealed a ditch which contained a substantial quantity of iron smelting slag. The only dating evidence from the fill of the ditch is provided by Early Iron Age pottery. Shooters Hill is one of the earliest known iron production sites in Britain and suggests that this region (the lower Thames valley) may have played a significant role in the introduction of iron manufacture.

Introduction

The site in Eaglesfield Park, Shooters Hill lies in the south east of London in the Borough of Greenwich. The underlying geology comprises Eocene (ie part of the Tertiary) deposits including Bracklesham and Bagshot Beds, both of which have been reported as containing small deposits of iron ores (Tylecote 1962, 178-9; Potter 1977). The site was subject to archaeological excavation in July 2007 which unexpectedly uncovered a ditch containing prehistoric pottery and ironworking slag. The slag provides some of the earliest evidence for iron manufacture in Britain.

The excavation

In July 2007, a programme of archaeological fieldwork, including excavation, was carried out on Shooters Hill as part of a television programme (Channel Four’s Time Team). The main focus of the television programme was the remains of Second World War defences; however, Trench 3 (NGR TQ 43 9117647) revealed part of a much earlier ditch (context 306). Excavation was limited but the ditch produced a small assemblage of late prehistoric pottery and ironworking slag. The slag provides some of the earliest evidence for iron manufacture in Britain.

In terms of fabrics, just over half of this small assemblage (31 sherds) comprises sherds which are sparsely flint-tempered within a fine clay matrix with a smooth texture (fine quartz grains are only visible microscopically; flint inclusions are less than 1mm in size). A further 22 sherds have coarser matrices and contain sparse to moderate voids (up to 2mm), representing leached out inclusions, in this case probably calcareous (possibly shell), and also rare flint inclusions. Three sherds have a coarser sandy matrix with rare flint up to 2mm. Four sherds have been so heavily burnt that their original fabric cannot be determined, and several other sherds also appear to have been slightly burnt. Diagnostic pieces consist of three rim sherds, two in the fine sandy/flint-tempered fabric and one in the ?shelly/flint-tempered fabric. None are sufficiently large to determine overall vessel form, although at least two of the three appear to derive from vessels with some sort of neck constriction. There are also two body sherds with carinations, both in the ?shelly/flint-tempered fabric.

The dating of this small group of pottery is of particular significance given the presence of a quantity of ironworking slag in the same feature, although it has to be said that the fabrics and forms seen here do not lend themselves to particularly refined dating. Flint-tempered fabrics containing sparse, randomly sorted inclusions have a currency from the Late Bronze Age (c1000 BC to c700 BC) to the Early Iron Age (c700 BC to c400 BC) in the lower Thames valley, as do shell-